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Abstract. This work studies CTL model checking for finite-state Markov
decision processes (MDPs) over the space of the MDP distributions.
Instead of investigating the behavior of paths and properties over states
of the MDP, as expressed with PCTL formulae, the focus of this work is
on the associated transition system that is induced by the MDP dynamics
over (transient) distributions. CTL logic is thus used to specify properties
over the space of distributions, which provides an alternative way to
express probabilistic specifications or requirements over the given MDP.
We discuss the distinctive semantics of CTL formulae over the distri-
bution space, compared to traditional PCTL specifications, and argue
that these two alternatives are different, yet related. We then propose
reachability-based CTL model checking algorithms over the distribution
space, as well as computationally tractable, sample-based procedures for
computing the relevant reachable sets: it is in particular shown that, with
these procedures, the satisfaction set of any CTL specification in positive
normal form can be soundly under-approximated by the union of convex
polytopes. Examples and a case study elucidate the new approach.

Keywords: Markov decision processes · Computation tree logic · Reach-
ability analysis · Transient probability distributions

1 Introduction

Probabilistic model checking is a technique for formally verifying properties
of stochastic models [12, 13, 15]. It provides a framework for calculating the
likelihood of the occurrence of specifications given the probabilistic behaviour
of a stochastic model. This technique is of great interest in disparate and
diverse applications, such as biological systems [10] and wireless networks [16],
and for power management problems [18]. Markov decision processes (MDPs)
are amongst the most popular models to formalize decision making under
uncertainty.

In this work, we study use of computation tree logic (CTL) to express
specifications for finite-state MDPs over their distribution space, and we cor-
respondingly develop new CTL model checking algorithms. Unlike the standard,
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existing body of work on model checking MDP over PCTL specifications, which
concern requirements over states and trajectories of the MDP, we investigate
the behavior of transient state distributions, which is governed by a discrete-
time transition system evolving over the space of continuous state distributions.
This transition system is endowed with non-determinism, depending on the
actions chosen over the MDP, which makes it natural to use CTL formulae
to specify properties and/or requirements over transient state distributions. We
show that the distribution-specified CTL formulae are semantically different
from the traditional probabilistic computation tree logic (PCTL) formulae, and
thus can be employed to encode alternative probabilistic specifications. More
specifically, the CTL framework proposed in this work can not only express
similar quantitative temporal logic specifications over the state space through
marginalisations over state distributions, but also encode other interesting
requirements, e.g., probabilistic safety, with different semantics than PCTL
formulae. In this work we thus extend known results on connections between
qualitative PCTL formulae and related CTL specifications on models with non-
determinism [2].

The characterisation of Sat sets of CTL specifications over continuous distri-
butions space is attained by a new algorithm that computes backward reachable
sets for both both existential and universal quantifiers. Furthermore, in order
to practically and scalably compute such Sat sets, we put forward sample-based
algorithms: specifically, we show that the satisfaction set of any CTL formula
in positive normal form can be under-approximated by the union of convex
polytopes.

This paper is organized as follows. Section 2 provides preliminaries on MDP
models and (P)CTL logics, and formalises the problems to be investigated.
Section 3 compares the semantics of distribution-specified CTL specifications
with PCTL formulae over MDPs. Section 4 presents a solution to the CTL model
checking problem based on reachability over the space of distributions, as well
as related sample-based computational procedures. Section 5 discusses a case
study to explain the proposed algorithms. Conclusions are drawn in Section 6.

Related Work - CTL [4] is a temporal logic based on a branching notion of
time, rather than the linear notion of time used in linear temporal logic (LTL).
A major difference with LTL is that CTL formulae allow the expression of prop-
erties in existential and universal sense, thus accounting for non-determinism
in the model of interest. The CTL model checking boils down the recursive
computation of satisfaction sets of sub-formulae, which relies on the backward
reachability analysis [5]. The literature has led to a few CTL model checkers, such
as EMC [4] and SMV [17]. In this work, we consider the CTL model checking over
a continuous distribution space, which restricts the usability of existing model
checkers. Instead, we design an approximate - yet sound - algorithm leveraging
the sample-based computation of backward distributional reachable sets.

There is a large body of literature on probabilistic model checking, see
for example [13] (for discrete-time Markov chain) and [7] (for MDP). Here,
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we restrict our attention to the relevant literature on PCTL model checking
for MDP. PCTL was first proposed in [9] as an extension of CTL. PCTL
model checking for MDP is usually reducible to the computation of maximal or
minimal probabilities for constrained reachability properties (e.g., next, bounded
or unbounded until) [2]. This can be solved via recursive equations and value
iteration for finite-horizon problems, or this relies on the solution to systems
of linear equations for infinite-horizon problems [7]. Notable software tools for
probabilistic model checking are PRISM [14] and Storm [6].

In [11], linear distribution temporal logic was introduced to integrate the
specifications over the hidden states of partial observable MDPs (POMDPs)
and the specifications over the belief of the hidden states. Recently, a barrier
function-based approach was developed for synthesis over POMDP under linear
distribution temporal logic specifications.

2 Preliminaries and Problem Formulation

In this section, we provide preliminaries on MDP models and on (P)CTL logic,
and then present two problems studied in this work.

2.1 Models - Markov Decision Processes (MDP)

Definition 1. A finite MDP is a tuple M = (X,U, T,APs, Ls), where

– X is a finite state space with cardinality |X| = n;
– U is a finite action space with cardinality |U| = m;
– T : X × X × U → R is a transition probability, i.e, T (y|x, u) assigns a

probability from the state x ∈ X and the action u ∈ U to the state y ∈ X;
– a finite set APs of atomic propositions;
– a labelling function Ls : X → 2APs .

For each x ∈ X, Ux ⊆ U is a nonempty set consisting of the admissible actions
when the state of the MDP is x. For any x ∈ X and u ∈ Ux,

∑
y∈X T (y|x, u) = 1.

Let us denote by P(X) the set of state distributions, which is a simplex in Rn.
A state distribution π ∈ P(X) can be seen as a non-negative row vector π ∈ Rn,
such that π1 = 1, where 1 is a column vector with all elements being 1.

Definition 2 (State-Action Path). For the MDP M, an infinite state-
action path starting from x0 ∈ X is a sequence of states x =
x0u0x1u1 . . . xkukxk+1uk+1 . . ., with T (xk+1|xk, uk) > 0. Denote by SPath(x0)
the set of all the state-action paths starting from x0.

In this paper, two kinds of policies are considered.

Definition 3 (Policies). A policy is a map µ : X → P(U), i.e., for each x ∈ X,∑
u∈Ux

µ(u|x) = 1., where P(U) is the set of distributions over U. Denote by U
this set of randomised policies.
A deterministic policy is a map µd : X → U, i.e., for each x ∈ X, µd(x) selects
precisely one u from Ux. Denote by Ud the set of deterministic policies.
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Note that, for an MDP M, the number of allowable deterministic policies is at
most mn, thus the set Ud is finite. It follows that a general policy µ ∈ U can be
interpreted as a distribution over Ud.

Any policy µ ∈ U (and, in particular, any deterministic policy µd ∈ Ud)
induces from T a row-stochastic matrix as:

Pµ(y|x) =
∑
u∈Ux

T (y|x, u)µ(u|x). (1)

Given an initial state distribution π0 ∈ P(X) and a sequence of time-
dependent policies {µk ∈ U}k∈N, the state distribution evolves over the Eu-
clidean space Rn as

πk+1 = πkP
µk =

∑
x∈X

πk(x)P
µk(y|x). (2)

As much as the MDP dynamics over its states (namely, its state-action paths)
are governed by the transition probability matrix, the state distribution of an
MDP follows the controlled dynamics in (2). We can thus work with the following
MDP-induced transition system over distribution space.

Definition 4. Given the MDP M = (X,U, T,APs, Ls), the MDP-induced tran-
sition system MTS is a tuple MTS = (P(X),U ,→,APd, Ld), consisting of

– the space P(X) of distributions over states, a subset of Rn;
– the set U of policies for M;
– the transition relation →∈ P(X) × U × P(X), i.e., for π, π′ ∈ P(X) and

µ ∈ U , π µ−→ π′ if and only if π′ = πPµ;
– a finite set APd of atomic propositions;
– a labeling function Ld : P(X) → 2APd .

In other words, the model MTS is an uncountable-state dynamical system
evolving over a subset of Rn (the unit simplex), with dynamics that are governed
by the difference equation (2). The labeling function Ld and the associated
atomic proposition set APd are in general different from Ls and APs in the
MDP M. In Section 3, we show that if Ld and APd are appropriately defined
based on Ls and APs, we can express related properties for M and MTS.

Definition 5 (Distribution-Policy Path). For the MDP-induced transition
system MTS, an infinite distribution-policy path π starting from π0 ∈ P(X) is
a sequence of state distributions π = π0µ0π1µ1 . . . πkµk . . . such that ∀k ∈ N,
πk

µk−−→ πk+1. Denote by DPath(π0) the set of infinite distribution-policy paths
starting from π0.

2.2 Specifications - Probabilistic Computation Tree Logic

CTL has a two-stage syntax, namely state and path formulae, defined over a
general alphabet AP, and encompasses both propositional and temporal logic
operators. CTL state formulae are formed according to the following grammar:

Φ ::= true | a | ¬Φ | Φ1 ∧ Φ2 | ∃φ | ∀φ,
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where a ∈ AP is an atomic proposition and φ is a path formula. CTL path
formulae are instead shaped according to the following grammar:

φ ::= ⃝Φ | Φ1UΦ2,

where ⃝ and U denote the “next” and “until” operators, respectively, and Φ,
Φ1, and Φ2 are state formulae.

A PCTL formula is also defined over a finite alphabet AP: its state formulae
Φ are much like CTL, whereas path formulae that in CTL are quantified either
existentially or universally (that is, ∃φ and ∀φ) now depend on a probabilistic
operator, as

Φ ::= [. . .] | Pr∼p(φ),

where φ is a path formula, but now Pr denotes the probabilistic operator, ∼∈ {>
,<,≥,≤}, and p ∈ [0, 1]. PCTL path formulae φ are defined similarly as CTL,
with the addition of the following operator:

φ ::= [. . .] | Φ1U
≤kΦ2,

where now k ∈ N is a finite index. The bounded until operator U≤k, as natively
used in PCTL formulae [2], can be naturally expressed also for CTL formulae
by evaluating their semantics over finite paths [21] (see below).

We now taylor the (P)CTL syntax above to the models of interest, namely
the MDP M and the MDP-induced transition system MTS, by discussing
the associated satisfaction semantics [2]. Notice in particular that the generic
alphabet AP will be tailored to the labelling maps introduced in the definitions
of the models above (respectively APs and APd), and that the semantics will
hinge on state-action paths for M and on distribution-policy paths for MTS,
respectively.

Definition 6 (PCTL Semantics). Consider the MDP M. Given an atomic
proposition a ∈ APs, a state x ∈ X, PCTL state formulae Φ, Φ1, and Φ2, and a
PCTL path formula φ, the satisfaction relation ⊨ is defined for state formulae
as follows:

x ⊨ a ⇔ a ∈ Ls(x),

x ⊨ ¬Φ ⇔ x ⊭ Φ,

x ⊨ Φ1 ∧ Φ2 ⇔ x ⊨ Φ1 ∧ x ⊨ Φ2,

x ⊨ Pr∼p(φ) ⇔ Pr
(
x ∈ SPath(x) | x ⊨ φ

)
∼ p.

Given a state-action path x = x0u0x1u1 . . . xkuk . . ., the satisfaction relation ⊨
is defined for path formulae by

x ⊨ ⃝Φ ⇔ x1 ∈ Φ,

x ⊨ Φ1U
≤kΦ2 ⇔ ∃j ∈ N[0,k] s.t.

{
xj ⊨ Φ2,

∀i ∈ N[0,j−1], xi ⊨ Φ1,

x ⊨ Φ1UΦ2 ⇔ ∃j ∈ N s.t.

{
xj ⊨ Φ2,

∀i ∈ N[0,j−1], xi ⊨ Φ1.
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Fig. 1: Graphical representation of the MDP in Example 1.

CTL formulae are instead now taylored to MTS as follows.

Definition 7 (CTL semantics). Consider the MDP-induced transition system
MTS, a state distribution π ∈ P(X), an atomic proposition a ∈ APd, CTL state
formulae Φ, Φ1, and Φ2, and a CTL path formula φ. The satisfaction relation ⊨
is defined for CTL state formulae in the same manner over their propositional
fragment, whereas

π ⊨ ∃φ ⇔ π ⊨ φ for some π ∈ DPath(π),

π ⊨ ∀φ ⇔ π ⊨ φ for all π ∈ DPath(π).

Given a distribution-policy path π = π0µ0π1µ1 . . . πkµk . . ., the satisfaction
relation ⊨ is defined for path formulae by

π ⊨ ⃝Φ ⇔ π1 ∈ Φ,

π ⊨ Φ1UΦ2 ⇔ ∃j ∈ N s.t.

{
πj ⊨ Φ2,

∀i ∈ N[0,j−1], πi ⊨ Φ1.

We have commented that the bounded-until operator can be naturally
expressed for CTL similarly [21]. The following example discusses two CTL
formulae specified over the distribution space.

Example 1. Consider the MDP with X = {x1, x2, x3},U = {a1, a2, a3}, and
the corresponding transition probability matrices displayed in Fig. 1. In order
to define the MDP-induced transition system MTS, let us introduce two sets
of state distributions, as shown in blue and red in Fig. 2. The set in red is
{π ∈ P(X) | ∥π − [1/3 1/3 1/3]∥∞ ≤ 0.1} and the set in blue is {π ∈ P(X) |
∥π− [0.1 0.2 0.7]∥∞ ≤ 0.05}. The label function Ld maps the distributions in the
blue region to the atomic proposition a and the distributions in the red region
to b. Let us consider two distribution-specified CTL formulae as Φ1 = ∃(¬aUb)
and Φ2 = ∀(⃝¬a), which will be used throughout this work. ⊓⊔

Remark 1. The choice of CTL, a temporal logic with branching semantics, is
motivated by the presence of non-determinism in the dynamics of the transition
system MTS. It should be clear that the verification question for existentially-
quantified formulae elicits a synthesis one, as we would be interested in generat-
ing the policy associated to satisfying traces. We shall see that the CTL model
checking algorithms we put forward do produce such policy. ⊓⊔
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Fig. 2: Two set of state distributions (in blue and red), with labels a and b
respectively, for the MDP of Example 1.

2.3 Statement of Problems under Study

The two perspectives on the MDP M and on the transition model MTS allow
to introduce two alternative classes of probabilistic temporal requirements: one
is by the widely-used PCTL logic, while another is with CTL formulae defined
over state distributions. In order to emphasise their differences and to highlight
the usefulness of introducing distribution-specified CTL formulae, we posit the
following first problem.

Problem 1. Given the MDP M and the MDP-induced transition system MTS,
formally relate the semantics of CTL formulae for MTS with that of PCTL
specifications for M.

The second goal is to solve the CTL model checking problem for MTS.

Problem 2. Given an MDP M with initial distribution π0 ∈ P(X) and the MDP-
induced transition system MTS, and a CTL formula Φ, verify whether π0 ⊨ Φ.

Note that, as CTL formulae in this work are defined over a continuous space
of distributions, the standard CTL model checking algorithms for finite-state
transition systems ought to be re-developed for this setup. It is remarkable that
the control literature has not developed algorithms for these models.

3 Problem 1 - Comparison of Distribution-specified CTL
Formulae with State-based PCTL Formulae

In this section, we compare the semantics of specific CTL formulae over the
MDP distribution space with that of PCTL ones over its state space.
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Table 1: Connections between specific CTL and PCTL formulae for MDPs

PCTL formula ΦPCTL CTL formula ΦCTL Condition Connection

(1) Pr∼p(⃝as) ∀(⃝ad) Xd = Π∼p(Xs)
x0 ⊨ ΦPCTL

if and only if
ex0 ⊨ ΦCTL

1

(2) Pr≥p(as ∨⃝as) ∀(ad ∨⃝ad) Xd = Π≥p(Xs)
x0 ⊨ ΦPCTL

if and only if
ex0 ⊨ ΦCTL

(3) Pr≥p(as1Uas2) ∀(ad1
Uad2

)
Xd1

= Π=1(Xs1)
Xd2 = Π≥p(Xs2)

x0 ⊨ ΦPCTL

if ex0
⊨ ΦCTL

(4) Pr≥p(as1U
≤kas2) ∀(ad1

U≤kad2
)

Xd1
= Π=1(Xs1)

Xd2 = Π≥p(Xs2)
x0 ⊨ ΦPCTL

if ex0
⊨ ΦCTL

(5) Pr=1(♢as) ∀(♢ad) Xd = Π=1(Xs)
x0 ⊨ ΦPCTL

if ex0
⊨ ΦCTL

(6) Pr≥p(□as) ∀(□ad) Xd = Π≥p(Xs)
ex0

⊨ ΦCTL

if x0 ⊨ ΦPCTL

(7) Pr=1(□as) ∀(□ad) Xd = Π=1(Xs)
x0 ⊨ ΦPCTL

if and only if
ex0

⊨ ΦCTL

1 ex0 is a vector with the x0-th element equal to 1 and all the others set to 0.

We first remark that, given the different semantics of CTL and PCTL
formulae, as provided in Section 2, these two sets of formulae are in general not
comparable. In particular, there exist distribution-specified CTL formulae for
which no corresponding PCTL formulae exist. For example, assume that there
exists an atomic proposition ad such that L−1

d (ad) is a subset of the interior of the
distribution space P(X). The meaningful CTL formulae ∃ ⃝ ad, ∀ ⃝ ad, ∃♢ad,
and ∀♢ad are such that any satisfying distribution in L−1

d (ad) has a domain
corresponding to the whole state space X, for which a corresponding PCTL
requirement is vacuous.

Still, despite their differences in syntax, we observe that there can be
connections between distribution-specified CTL formulae and standard PCTL
specifications. Consider the MDP M = (X,U, T,APs, Ls) and the MDP-induced
transition system MTS = (P(X),U ,→,APd, Ld). Let APs = {as, as1, as2},
Xs = L−1

s (as), Xs1 = L−1
s (as1), and Xs2 = L−1

s (as2). Similarly, let APd =
{ad, ad1, ad2}, Xd = L−1

d (ad), Xd1 = L−1
d (ad1), and Xd2 = L−1

d (ad2). For
a set Y ⊆ X, define Π∼p(Y) = {π ∈ P(X) |

∑
x∈Y π(x) ∼ p}, where

∼∈ {>,<,≥,≤,=} and p ∈ [0, 1] is a given probability level. Table 1 summarises
connections between specific CTL and PCTL formulae, emphasising required
connections between the sets Xs, Xs1, and Xs2 for PCTL, and Xd, Xd1, and Xd2

for CTL, respectively. Let us discuss these connections in detail next.
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For (1), x0 ⊨ Pr∼p(⃝as) if and only if
∑

y∈Xs
Pµ(y|x0) ∼ p for all µ ∈ U ,

which can further rewritten as ex0P
µ ∈ Xd ≜ Π∼p(Xs), for all µ ∈ U . Thus,

x0 ⊨ Pr∼p(⃝as) if and only if ex0
⊨ ∀(⃝ad). Similar arguments apply to (2).

For (3), ex0 ⊨ ∀(ad1Uad2) implies that for any distribution-policy path
π = ex0

µ0π1µ1 . . . πkµk . . ., there exists j ∈ N such that πj ∈ Xd2
and for

all i ∈ N[0,j−1], πi ∈ Xd1
. For π = ex0

µ0π1µ1 . . . πkµk . . ., let ŜPath(π) =
{x ∈ SPath(x0) | x = x0u0x1u1 . . . xkuk . . . , µk(uk|xk) > 0, Pµk(xk+1|xk) >
0,∀k ∈ N}. Given the definitions of Xd1

and Xd2
, we have that Pr

(
x ∈

SPath(x0)|x ⊨ φ
)
≥ Pr

(
x ∈ ŜPath(π)|π ∈ DPath(ex0

), ex0
⊨ ∀(ad1

Uad2
)
)
≥ p.

Thus, x0 ⊨ Pr≥p(as1Uas2) if ex0
⊨ ∀(ad1

Uad2
).

From (3), similar arguments apply to the bounded until formula in (4) and
to the eventually operator in (5). It should be highlighted that in (5), we show
that there exists a distribution-specified CTL formula that corresponds to the
qualitative PCTL formula Pr=1(♢as). However, it is known [2] that there exists
no state-based CTL formula that is equivalent to this PCTL formula.

Different from the cases in (1)–(5), where CTL formulae give sufficient (or
necessary and sufficient) conditions to verify corresponding PCTL formulae, we
show that in (6) the CTL-specified probabilistic safety is weaker than the PCTL-
specified probabilistic safety. Recall Pr≥p(□as) = Pr≤p(♢¬as). It has been shown
in [20, 8] that this property holds for some state x0 and p > 0 only if the set
Xs contains an absorbing set, which raises a strong assumption on Xs. Instead,
we can use the CTL formula ∀(♢ad) to express a different probabilistic safety
requirement. Since Xd = Π≥p(Xs), this CTL formula specifies the property of
staying in the set Xs with probability no less than p at each time step, which
is a weaker property than Pr≥p(□as). Thus, ex0

⊨ ΦCTL if x0 ⊨ ΦPCTL. Then,
when it comes to a qualitative property, i.e., p = 1, we have ex0

⊨ ΦCTL if and
only if x0 ⊨ ΦPCTL, as shown in (7) of Table 1.

Finally, we highlight that CTL model checking over the distribution space
returns an informative satisfaction set that is a subset of the distribution space,
unlike PCTL model checking, which results in a satisfaction set that is a subset
of the state space. Different from the PCTL model checking algorithm, which
boils down to the evaluation of the minimal or maximal probability of satisfying
a formula, the new CTL model checking algorithm in this paper leverages
reachability analysis over distribution space, as detailed in the next section.

4 Problem2 - CTL Model Checking on Distribution Space

This section will provide a reachability-based solution to Problem 2, i.e., a
characterisation of CTL model checking for MDPs over their distribution space.
We begin by defining two backward-reachability operators with respect to
existential and universal quantifiers, respectively. We then adapt the standard
CTL model checking algorithm based on reachability analysis for finite transition
systems to one for MDP-induced transition systems, which are instead endowed
with a continuous state space. In view of this key feature, we finally provide
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an approximate method for facilitating the computations associated to the new
algorithm.

In this section, we focus our attention to the CTL formulae expressed in
positive norm form (PNF), for which negations can only occur to basic atomic
propositions. This assumption, which is clearly not restrictive, will facilitate
the computation of under-approximations of the satisfaction sets required to
verify general CTL formulae. It is well known [2] that each CTL formula can
be equivalently expressed as one in PNF. The syntax of CTL state formulae
in PNF is given by Φ ::= true | false | a | ¬a | Φ1 ∧ Φ2 | Φ1 ∨ Φ2 | ∃φ | ∀φ,
while the CTL path formulae in PNF is defined by φ ::= ⃝Φ | Φ1UΦ2 | Φ1WΦ2,
where W denotes the “weak-until” operator. The semantics of W is the following:
given a distribution-policy path π = π0µ0 . . . πkµk . . ., we say that π ⊨ Φ1WΦ2

if π ⊨ Φ1UΦ2 or π ⊨ □Φ1, where □ denotes the “always” operator, whereby
π ⊨ □Φ if ∀j ∈ N, πj ⊨ Φ.

4.1 Reachability-based CTL Model Checking over Distributions

Consider the MDP M = {X,U, T,APs, Ls} and the MDP-induced transition
systemMTS = (P(X),U ,→,APd, Ld). Define the set-valued map BR∃ : 2P(X) →
2P(X) as

BR∃(Π) = {π ∈ P(X) | ∃µ ∈ U , πPµ ∈ Π} , (3)

as well as the set-valued map BR∀ : 2P(X) → 2P(X) as

BR∀(Π) = {π ∈ P(X) | ∀µ ∈ U , πPµ ∈ Π} , (4)

where Π ⊆ P(X). The set BR∃(Π) collects all the state distributions which can
be steered to the set Π under some policy µ ∈ U , while the set BR∀(Π) collects
all the state distributions which can be steered to the set Π under all policies
µ ∈ U .

Let us introduce the Post Set Post(π), comprising the direct successors of

π ∈ P(X): this is defined by Post(π) = {π′ ∈ S | ∃µ ∈ U , π µ−→ π′}. The above
two maps BR∃ and BR∀ can then be rewritten, respectively, as

BR∃(Π) = {π ∈ P(X) | Post(π) ∩Π ̸= ∅} ,
BR∀(Π) = {π ∈ P(X) | Post(π) ⊆ Π} .

Based on the two maps defined above, and leveraging the standard CTL
model checking algorithms for finite-state models [2], we introduce a new CTL
model checking for MDPs over their distributions space.

Let us denote by Sat(Φ) = {π ∈ P(X) | π ⊨ Φ} the satisfaction set of any
CTL state formula Φ. Consider an atomic proposition a ∈ APd and three CTL
state formulae Φ, Φ1, and Φ2 in PNF. For the propositional fragment of CTL
formulae, it is straightforward to see that:

– Sat(true) = P(X) and Sat(false) = ∅;
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– Sat(a) = {π ∈ P(X) | a ∈ Ld(π)} and Sat(¬a) = P(X) \ Sat(a);
– Sat(Φ1 ∧ Φ2) = Sat(Φ1) ∩ Sat(Φ2) and Sat(Φ1 ∨ Φ2) = Sat(Φ1) ∪ Sat(Φ2).

Furthermore, from the one-step operators introduced above, it follows that

– Sat(∃⃝ Φ) = BR∃(Sat(Φ)) and Sat(∀⃝ Φ) = BR∀(Sat(Φ)).

Finally, the following proposition characterises how to compute the satisfaction
sets for the until and weak-until operators in CTL.

Proposition 1. The following statements hold:

Sat (∃ (Φ1UΦ2)) = T∞, Sat (∃ (Φ1WΦ2)) = T∞ ∪ P∞;

Sat (∀ (Φ1UΦ2)) = S∞, Sat (∀ (Φ1WΦ2)) = S∞ ∪Q∞;

where

T∞ = lim
k→∞

Ti = cl(
⋃
i∈N

Ti),Ti+1 = Ti ∪ (Sat(Φ1) ∩ BR∃(Ti)) with T0 = Sat(Φ2);

S∞ = lim
k→∞

Si = cl(
⋃
i∈N

Si),Si+1 = Si ∪ (Sat(Φ1) ∩ BR∀(Si)) with S0 = Sat(Φ2);

P∞ = lim
k→∞

Pi =
⋂
i∈N

cl(Pi),Pi+1 = Pi ∩ BR∃(Pi) with P0 = Sat(Φ1);

Q∞ = lim
k→∞

Qi =
⋂
i∈N

cl(Qi),Qi+1 = Qi ∩ BR∀(Qi) with Q0 = Sat(Φ1).

Proof. See Appendix B. ⊓⊔

To summarise, CTL model checking over distribution space reduces to the
computation of backward reachable sets BR∃(Π) and BR∀(Π) from a given set
Π ⊂ P(X). Let us emphasise that, for general sets Π (in particular, non-convex),
it can be difficult to manipulate BR∃(Π) and BR∀(Π). Next, we will develop a
sample-based method for facilitating this numerical computation.

4.2 A Sample-based Approximate Method to Compute Polytopic
Backward Reachable Sets

We restrict our attention to the problem of computing backward reachable
sets BR∃(Π) and BR∀(Π) whenever Π ⊆ P(X) is a convex polytope. Let
us recall that a convex polytope Y ⊂ Rn can be expressed in a (vertex) V-
representation, i.e., Y = conv({v1, . . . , vN}); or alternatively in a (face, or half-
space) H-representation, namely Y = {z ∈ Rn | Ax ≤ b}, where vi ∈ Rn,
i = 1, . . . , N , N ∈ N, A ∈ Rl×n, b ∈ Rl, and l is the number of half-spaces.

Focussing on an MDP model M and the associated MTS, the following result
provides a different way to represent BR∃(Π) and BR∀(Π) if Π ⊆ P(X) is
asumed to be a convex polytope.

Proposition 2. If Π ⊆ P(X) is a convex polytope, then



12 Y. Gao et al.

– BR∃(Π) is a convex polytope and can be rewritten as

BR∃(Π) =

(Q1)T ∈ P(X)

∣∣∣∣∣∣∣
Q ∈ Rn×m, Q ≥ 0, (Q1)T ∈ P(X),
π ∈ Π, ∀y ∈ X, π(y) =∑
x∈X

∑
u∈Ux

T (y|x, u)Q(x, u)

 .(5)

– BR∀(Π) is a convex polytope and can be rewritten as

BR∀(Π) =
{
π ∈ P(X)

∣∣∣ ∀µd ∈ Ud, πPµd

∈ Π
}
. (6)

Proof. See Appendix A. ⊓⊔

Remark 2. The matrix Q to define the existential backward reachable set in (6)
is called the occupation measure in the literature, which enables to recover a
policy µ ∈ Ū by

µ(u|x) =


Q(x,u)∑

v∈Ux Q(x,v) if
∑

v∈Ux

Q(x, v) > 0,

1
|Ux| , if

∑
v∈Ux

Q(x, v) = 0 & u ∈ Ux.

The use of occupation measures allows to reformulate a constrained MDP
problem as a linear program [1], which solution can be used to recover a sequence
of (time-dependent) policies for a finite-horizon problem (cf. case study). ⊓⊔

From Proposition 2 we can observe that, even if the set Π is a polytope
in the form of either V-representation or H-representation, it can still be quite
challenging computationally to exactly compute the polytopic sets BR∃(Π) and
BR∀(Π), particularly whenever the MDP M has a large number n of states. The
main reason is that both BR∃(Π) and BR∀(Π) depend on extra variables (e.g.,
the matrix Q in (5)), and that the necessary set projection in high-dimensional
spaces can be computationally heavy. In the following we discuss Algorithm 1, a
scalable, sample-based method to under-approximate sets BR∃(Π) and BR∀(Π).

The input to Algorithm 1 consists of two convex polytopes Π and Γ with
Π ⊆ P(X) ⊂ int(Γ ), and the number of samples Ns ∈ N≥1. In line 1,

we select uniformly at random samples {πs
i }

Ns
i=1 in Rn from Γ . Then, these

samples are used to generate samples π1s
i ∈ BR∃(Π) and π2s

i ∈ BR∀(Π) in
line 3, by projecting πs

i onto BR∃(Π) and BR∀(Π), respectively. The output
of Algorithm 1 comprises the convex hulls of these projected samples, namely
B̂R∃(Π,Ns) and B̂R∀(Π,Ns). The following proposition discusses two important
properties of the sets output by the algorithm.

Proposition 3. Consider two convex polytopes Π and Γ with Π ⊆ P(X) ⊂
int(Γ ) and an integer Ns ∈ N≥1. Under Algorithm 1, the sets B̂R∃(Π,Ns) and

B̂R∀(Π,Ns) are under approximations of BR∃(Π) and BR∀(Π), respectively,
for all Ns ∈ N≥1.

Proof. See Appendix A. ⊓⊔
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Algorithm 1 Sample-based Backward Reachable Set Computation

Input: two convex polytopes Π and Γ with Π ⊆ P(X) ⊂ int(Γ ), Ns ∈ N≥1

Output: approximated backward reachable sets B̂R∃(Π,Ns) and B̂R∀(Π,Ns)

1: select uniformly at random a group of samples {πs
i }Ns

i=1 from Γ ;
2: for i = 1 : Ns do
3: compute π1s

i = argminπ∈BR∃(Π) ∥π−πs
i ∥2 and π2s

i = argminπ∈BR∀(Π) ∥π−πs
i ∥2

4: end for
5: return B̂R∃(Π,Ns) = conv

(
{π1s

i , i ∈ N[1,Ns]}
)
and B̂R∀(Π,Ns) = conv

(
{π2s

i , i ∈
N[1,Ns]}

)
.

The computational complexity of Algorithm 1 is linear with the number of
samples and polynomial with the number of states n and with the number of
actions m. Projecting each sample πs

i onto BR∃(Π) and BR∀(Π) is a quadratic
program with n+ nm decision variables. There exist standard algorithms, e.g.,
the interior point method [3], that can solve a quadratic program in polynomial
time with respect to the number of decision variables.

4.3 Approximate CTL Model Checking over Distribution Space

Leveraging the sample-based computation of backward reachable sets, we are
ready to design an approximate, yet sound, CTL model checking algorithm over
the distribution space.

In the following, we will show that the satisfaction set of each CTL formula
in PNF can be under-approximated by the union of a group of convex polytopes,
under the following assumption. We remark that this assumption and the latter
Lemma 3 echo why we focus on the CTL formulae in PNF: if the set Sat(Φ) is
under-approximated by unions of convex polytopes, such under-approximation
will in general not hold for Sat(¬Φ), unless Φ is an atomic proposition.

Assumption 1 For each atomic proposition a ∈ APd, the set of distributions
associated with the labeling function Ld, denoted by L−1

d (a) = {π ∈ P(X) | a ∈
Ld(π)}, is a convex polytope, later considered in its H-representation.

Let us recall how to compute the set complement of a convex polytope.

Lemma 1. Consider a convex polytope Y0 with Y0 ⊆ P(X). Suppose Y0 = {z ∈
Rn | Ax ≤ b} with A ∈ Rl×n and b ∈ Rl. Let Yi = {z ∈ P(X) | [A]iz ≥ bi + ϵi},
∀i ∈ N[1,l], where [A]i and bi denotes the i-th row of A and b, respectively, and

ϵi is a small positive constant. Then,
⋃l

i=1 Yi ⊂ P(X) \ Y0.

The use of ϵi is to ensure the closure of the set Yi. Lemma 1 implies that,
under Assumption 1, for each atomic proposition a ∈ APd, the satisfaction set
Sat(¬a), i.e., the complement of L−1

d (a) with respect to P(X), can be under-
approximated by the union of a set of convex polytopes.

The following lemma shows that the backward-reachable sets obtained from
the union of a set of convex polytopes can be under-approximated by the union of
the backward reachable sets obtained from the corresponding convex polytopes.
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Lemma 2. Consider a group of sets {Πi}Mi=1, where each Πi ⊆ P(X) is a convex
polytope. For any Ni ∈ N≥1, i ∈ N[1,M ],

∪M
i=1B̂R∃(Πi, Ni) ⊆ BR∃(∪M

i=1Πi) and ∪M
i=1 B̂R∀(Σi, Ni) ⊆ BR∀(∪M

i=1Πi).(7)

Proof. Directly follows from Proposition 3. ⊓⊔

The next lemma shows that the satisfaction sets obtained by applying
propositional and temporal operators (and hence the sat sets of general CTL
formulae in PNF) can be under-approximated by the union of convex polytopes.

Lemma 3. Consider three CTL formulae Φ, Φ1 and Φ2 in PNF. Suppose
that their satisfaction sets Sat(Φ), Sat(Φ1), Sat(Φ2) are respectively under-
approximated by unions of convex polytopes. Then, the sets Sat(Φ1 ∧ Φ2),
Sat(Φ1∨Φ2), Sat(∃⃝Φ), Sat(∀⃝Φ), Sat(∃Φ1UΦ2), Sat(∀Φ1UΦ2), Sat(∃Φ1WΦ2),
and Sat(∀Φ1WΦ2) can be also under-approximated by finite unions of convex
polytopes.

The following example shows satisfaction sets of the CTL formulae in Example 1.

Example 2. Let us recall the MDP and CTL formulae in Example 1. Consider
the formula ∃(¬aUb). Applying Algorithm 1 and Lemmata 1–3, we obtain the
under-approximation of the satisfaction set Sat(∃(¬aUb)), which is the union
of the four cyan sets shown in Fig. 4 of Appendix B. Similarly, the cyan state
distribution set in Fig. 5 of Appendix B under-approximates the satisfaction set
Sat(∀(⃝¬a)). ⊓⊔

Now we are ready to provide the solution to Problem 2, i.e., CTL model
checking over the distribution space of MDPs.

Theorem 1. Consider the MDP M and the MDP-induced transition system
MTS. Suppose that Assumption 1 holds. Then there exists a sound and com-
putationally tractable algorithm such that, for any CTL formula Φ in PNF, its
satisfaction set Sat(Φ) can be under-approximated by a finite union of convex
polytopes.

Proof. See Appendix A. ⊓⊔

5 Case Study

In this section, we will validate our CTL model checking algorithm through an
unmanned aerial vehicle (UAV) path planning example.

As shown in 3, the UAV moves in a 5 × 5 grid world and has five possible
actions {up, down, left, right, stay}. Due to environmental uncertainties (e.g.,
wind), we assume that the first four actions will drive the state to the desired
next configuration with probability 1−α, and to to other neighboring states with
likelihood α

Nneigh
, where Nneigh is the number of available/feasible neighboring

states (not including the desired state). We say that a state (x1, y1) is a
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neighboring state of a state (x1, y1) if max{|x1 − x2|, |y1 − y2|} ≤ 1. The cyan
regions are obstacles and we assume that the corresponding states are absorbing
states, that is, these states are invariant under all actions. Denote by Obs the set
of obstacle states. The red grid (5, 5) is the target state, denoted by Target. The
initial state is the blue square at (1, 1). We consider the following path planning

1 2 3 4 5

1

2

3

4

5

Fig. 3: Case Study - UAV Motion
Planning

problem: to find a feasible policy such
that, starting from the initial state, the
UAV reaches the target set, whilst avoid-
ing the obstacle states, with a desired
probability (assumed to be given).

This problem can be studied by in-
troducing an MDP model M. The state
space X corresponds to the set compris-
ing the 25 squares in the grid world,
whereas the action space U is {up, down,
left, right, stay}. The transition prob-
ability T is defined according to the
transitions described above. Let APs =
{aunsafe, atarget} be the set of atomic
proposition, and Ls a labeling func-
tion, such that L−1

s (aunsafe) = Obs and
L−1
s (atarget) = {(5, 5)}, i.e. the target

state. The motion planning problem is to find a policy such that the PCTL
formula ΦPCTL = Pr≥p(¬aunsafeUatarget) is fulfilled, where p ∈ (0, 1] is a desired
(given) probability level.

Given the MDP M, we can formalise the corresponding MDP-induced tran-
sition system MTS. The distribution space P(X) is a subset of R25, and the
policy set U is defined as in Definition 3. Let the set of atomic propositions
be APd = {bβunsafe, b

p
target}, and introduce a labeling function be Ld such that

L−1
d (bβunsafe) = {π ∈ P(X) |

∑
x∈Obs π(x) ≤ β} and L−1

d (bptarget) = {π ∈ P(X) |
π(Target) ≥ p}, where β ∈ [0, 1]. That is, the sets L−1

d (bβunsafe) and L−1
d (bptarget)

are parameterized by β and p, respectively. Let us denote by π0 the distribution
associated with the deterministic initial state {(1, 1)}. The existence of a policy
solving the motion planning problem can be asserted if π0 satisfies the CTL
formula ΦCTL = ∃(¬bβunsafeUb

p
target), and obtained according to Remark 2.

In the following we consider two scenarios. In the first one, the parameter α is
set to be 0, that is, each action drives the current state to the specified direction
with probability 1 - the model’s dynamics are deterministic. The probability
levels β and p are set to be 0 and 0.8, respectively. We remark that in this setting,
as discussed in Table 1, if π0 = e(1,1) fulfils the CTL formula ΦCTL, then there
exists a sequence of policies such that the initial state (1, 1) satisfies the PCTL
formula ΦPCTL. Implementing the approximate CTL model checking algorithm,
we find that the distribution π0 falls within the (existential) backward-reachable
set after 8 iterations (cf. Theorem 1). According to Remark 2, we can synthesize
a sequence of policies such that starting from (1, 1), the state reaches the target
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state (5,5) while avoiding the obstacles within 8 steps, with probability no less
than p = 0.8. Fig. 6 in Appendix B shows the evolution of the state distributions
across this time horizon.

In the second scenario, the parameter α is set to be 0.05 so that there exist
possible transitions to other neighboring states under the first four actions. If we
still set β and p to be 0 and 0.8, the PCTL formula ΦPCTL becomes infeasible,
which entails (cf. Table 1) that the distribution π0 does not satisfy the CTL
formula ΦCTL. Alternatively, we relax the parameter β from 0 to 0.15. This means
that the UAV is required to stay in the safe region with probability greater than
0.85 at all times. Implementing the approximate CTL model checking algorithm,
we find that π0 is in the sound approximate satisfaction set (see result in Theorem
1). Thus, similarly to the above case, we can find a feasible realization of the
transient state distribution, which is shown in Fig. 7 of Appendix B.

The case study has been run on an ARM system M1 chip on MacBook
Pro 2021, with 16GB RAM. A set of 400 sample has been used for each
independent run of the experiments, which took an average 10 seconds for the
deterministic scenario, and 200 seconds for the noisy scenario. These result shows
that the computational overhead is reasonable, as this case study the sat set were
computed over a space with 25 dimensions.

6 Conclusions

We have introduced a model checking framework for finite MDPs over the
space of their transient distributions. Focusing on the transition system that
is induced by the MDP dynamics over its space of distributions, we have
employed CTL logic to specify temporal properties. This provides an alternative
way to express probabilistic specifications for the MDP. We have compared
the semantics of CTL formulae over distribution space with traditional PCTL
specifications, and showed that these two alternatives are different, yet related.
We have proposed novel reachability-based CTL model checking algorithms
over distributions space, as well as more tractable sample-based procedures for
computing reachable sets: it is in particular shown that, with these procedures,
the satisfaction set of any CTL specification in positive normal form can be
soundly under-approximated by the union of convex polytopes. The CTL model
checking algorithm for existentially quantified formulae additionally results in a
policy such that the CTL formula is fulfilled.

In parallel with the CTL model checking problem over MDP distribution,
another worthwhile goal is the policy synthesis for the distribution-specified LTL
requirements. We are also interested in developing model checking approaches
based on finite-state, non-stochastic abstractions of the MDP-induced transition
system, and in framing them within the theory of (bi-)simulation relations
between the abstract model and the concrete MTS.
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Appendix A

Proof of Proposition 1. Let us first consider formulae that are quantified
existentially. We have that ∃ (Φ1WΦ2) = ∃ (Φ1UΦ2) ∨ ∃□Φ1. It has been shown
in [2] that the computation of Sat (∃ (Φ1UΦ2)) and Sat (∃□Φ1) leverages the
iterative computation of the set Ti and Pi, respectively. Note that the sequence{
Ti

}
k∈N is non-decreasing, whereas the sequence

{
Pi

}
k∈N is non-increasing.

Then, it follows from the convergence of monotone set sequences [19] that
Sat (∃ (Φ1UΦ2)) = T∞ and Sat (∃ (Φ1WΦ2)) = T∞ ∪ P∞.
A similar reasoning applies over universally quantified formulae, by replacing the
existentially quantified backward-reachable set with the universally quantified
backward-reachable set. ⊓⊔

Proof of Proposition 2. Let us first consider the expression of BR∃(Π).
From (1), the distribution dynamics (2) can be rewritten in the following form:

π′ =
∑
x∈X

π(x)Pµ(y|x) =
∑
x∈X

π(x)
( ∑

u∈Ux

T (y|x, u)µ(u|x)
)

for some µ ∈ U . It follows that the product of µ(u|x) and π(x) can be replaced
by a matrix Q ∈ Rn×m with Q ≥ 0 and (Q1)T ∈ P(X). Thus, the set BR∃(Π)
defined in (3) can be rewritten as (5). If Π ⊆ P(X) is a convex polytope, we
have that BR∃(Π) in (5) involves a finite number of inequalities and thus it is
also a convex polytope.

For the set BR∀(Π), recall the fact that each policy µ ∈ U is a distribution
over the set of deterministic policies Ud, and that the set Ud has finite cardinality.
Thus, BR∀(Π) can be can be rewritten as (6) and it is also a convex polytope
if Π is a convex polytope. ⊓⊔

Proof of Lemma 2. The under approximation relation between B̂R∃(Π,Ns)

and BR∃(Π) (or B̂R∀(Π,Ns) and BR∀(Π)) directly follows from that the
projected samples π1s

i ∈ BR∃(Π) and π2s
i ∈ BR∀(Π) (see line 3 in Algorithm 1).

⊓⊔

Proof of Lemma 3. Suppose ∪MΦ
i=1Π

Φ
i ⊆ Sat(Φ), ∪MΦ1

i=1 ΠΦ1
i ⊆ Sat(Φ1),

∪MΦ2
i=1 ΠΦ2

i ⊆ Sat(Φ2), where ΠΦ
i , Π

Φ1
j , and ΠΦ2

k are convex polytopes for all
i ∈ N[1,MΦ], j ∈ N[1,MΦ1

], and k ∈ N[1,MΦ2
].
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Let us first consider Sat(Φ1 ∧ Φ2). Applying the distributive law of set
operations, we obtain that

Sat(Φ1 ∧ Φ2) ⊇
(
∪MΦ1
i=1 ΠΦ1

i

)
∩
(
∪MΦ2
j=1 ΠΦ2

j

)
= ∪i∈N[1,MΦ1

]

j∈N[1,MΦ2
]

(
ΠΦ1

i ∩ΠΦ2
j

)
.

Note that the intersection of two convex polytopes is either a convex polytope
or an empty set. Thus, Sat(Φ1 ∧Φ2) can be under-approximated by the union of
convex polytopes. For the disjunction operator, it is straightforward to see that

Sat(Φ1 ∨ Φ2) ⊇
(
∪MΦ1
i=1 ΠΦ1

i

)
∪
(
∪MΦ2
j=1 ΠΦ2

j

)
.

Let us now consider basic formulae with temporal operators. For the next
operator, it follows from Lemma 2 that Ni ∈ N≥1, i ∈ N[1,M ],

Sat(∃⃝ Φ) ⊇ BR∃(∪MΦ
i=1Π

Φ
i ) ⊇ ∪MΦ

i=1B̂R∃(Π
Φ
i , Ni),

Sat(∀⃝ Φ) ⊇ BR∀(∪MΦ
i=1Π

Φ
i ) ⊇ ∪MΦ

i=1B̂R∀(Π
Φ
i , Ni).

For the until operator, with reference to Proposition 1, let us define the set
sequences for each set ΠΦ2

j , j ∈ N[1,MΦ2
]:

T̂i+1,j =
(
∪MΦ1
i=1 ΠΦ1

i

)
∩ B̂R∃(T̂i,j , Ni,j) with T̂0,j = ΠΦ2

j ,

Ŝi+1,j =
(
∪MΦ1
i=1 ΠΦ1

i

)
∩ B̂R∀(Ŝi,j , Ni,j) with Ŝ0,j = ΠΦ2

j .

where Ni,j ∈ N≥1. By the distributive law and following Lemma 2, we can

recursively show that both T̂i,j and Ŝi,j can be represented as the union of a finite
number of convex polytopes. It follows from Proposition 1 that Sat(∃Φ1UΦ2) and

Sat(∀Φ1UΦ2) can be, respectively, under-approximated by ∪MΦ1
j=1 ∪N1

i=1 T̂i,j and

∪MΦ1
j=1 ∪N2

i=1Ŝi,j , for allN1, N2 ∈ N≥1, both of which are union of convex polytopes.
Finally, for the weak until operator, we need further define the following set

sequences for each ΠΦ1
j , j ∈ N[1,MΦ1

]:

P̂i+1,j = P̂i,j ∩ B̂R∃(P̂i,j , Ni,j), with P̂0,j = ΠΦ1
j ,

Q̂i+1,j = Q̂i,j ∩ B̂R∀(Q̂i,j , Ni,j), with Q̂0,j = ΠΦ1
j ,

where Ni,j ∈ N≥1. Note that both P̂i,j and Q̂i,j are convex polytopes for all
j. Let Itermax ∈ N≥1 be the maximum iteration. If there exists i ≤ Itermax −
1 such that P̂i+1,j = P̂i,j , let P̂□,j = P̂i,j ; otherwise, let P̂□,j = ∅. We can

define Q̂□,j similarly. Then, we have that Sat(∃Φ1WΦ2) and Sat(∀Φ1WΦ2) can

be, respectively, under-approximated by
(
∪MΦ1
j=1 ∪N1

i=1 T̂i,j

)
∪
(
∪MΦ1
j=1 P̂□,j

)
and(

∪MΦ1
j=1 ∪N1

i=1 Ŝi,j
)
∪
(
∪MΦ1
j=1 Q̂□,j

)
, for all N1, N2 ∈ N≥1, both of which are union

of convex polytopes. This completes the proof. ⊓⊔

Proof of Theorem 1. Recall that the CTL model checking can be performed
by a recursive procedure that calculates the satisfaction set for all subformulae
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of Φ. If Φ is in PNF, it follows from Lemmata 1 and 3 that under Assumption 1,
the satisfaction set of each subformula of Φ can be under-approximated by
the finite union of convex polytopes. It follows from the proofs of Lemmata 1
and 3, the under-approximated set is computed by applying Algorithm 1,
which is computationally tractable. Due to the under-approximation relation, we
conclude that if an initial distribution π0 belongs to this under-approximated set,
we conclude that π0 ⊨ Φ, which implies the soundness of the overall approach.

⊓⊔
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Appendix B

(a) (b)

(c) (d)

Fig. 4: Four distribution sets (cyan colour), whose union under-approximates the
satisfaction set Sat(∃(¬aUb)), where a labels the blue polytope. The magenta stars
are projections of the generated samples onto the satisfaction sets.

Fig. 5: The state distribution set in cyan that under-approximates the satisfac-
tion set Sat(∀(⃝¬a)), where a labels the blue polytope. The magenta stars are
projections of the generated samples onto the satisfaction set.
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Fig. 6: MDP with deterministic transitions: evolution of state distribution that,
initialised as π0 = e(1,1) and under a feasible policy, reaches the target state
(5, 5) (within 8 steps) while avoiding the obstacles (as in Fig. 3) with overall
probability no less than 0.8.

Fig. 7: MDP with noisy transitions: evolution of state distribution that, ini-
tialised as π0 = e(1,1) and under a feasible policy, reaches the target state (5, 5)
with probability grater than 0.80, while possibly entering the obstacles (as in
Fig. 3) with probability no greater than 0.15 at all times.


